Abington Heights School District Probability and Statistics Curriculum

In Probability and Statistics, students develop their numeracy skills through the following areas of study:

1. Statistics \& Data Displays
2. Probability \& Discrete Probability Distributions
3. The Normal Distribution \& Its Applications

Board Approval Date: June 7, 2023
Adoption: 2023-2024 SY
Review Date:

Abington Heights Math Framework

Stakeholders	Actions
Students	ڤ Engage in mathematical discussions, share their ideas openly, be inquisitive, seek to understand and learn more about mathematical concepts, and try their best daily. ฝ Exhibit creativity and curiosity in problem solving individually and collaboratively. \star Persevere in engaging and challenging daily mathematical practice. \star Come prepared to learn every day.
Teachers	\star Create a safe and collaborative classroom environment where students feel vested in a shared vision for mathematical excellence. \star Develop high quality instruction that meets the needs of all learners through differentiation. \star Use a variety of 21st century methodologies to advance learning. \star Partner with parents and guardians to support student success. \star Establish a collaborative community within the building and amongst grade levels to ensure a cohesive level of instruction.
Building Leaders	\star Deeply understand the needs of teachers, students, the instructional materials being used, programs being implemented, and the expectations for state-level assessment scores - Knowledgeable about program and grade level standards - Ensure consistent and equal access to high-quality instructional materials and resources, building. \star Be partners with teachers, students and families: - Provide guidance and support to the mathematical community. - Understand needs of teachers, students and families. \star Trust the educators to make professional decisions based on program, student, and district needs.
Central Admin	\star Effectively communicate to the school board and community specific areas of need and how to support teachers and building leaders in a quest for mathematical excellence \star Deeply understand the needs of teachers, students, the instructional materials being used, programs being implemented, and the expectations for state-level assessment scores - Have a common metric for mathematical excellence. - Ensure consistent and equal access to high-quality instructional materials and resources, district. - Re-examine best practices/curriculum routinely (6 years). \star Support a culture of collaboration between the other stakeholder groups to maintain the standard of excellence of the Abington Heights \star Trust the educators to make professional decisions based on program, student, and district needs.
Parents/ Community	\star Be a strong support system and contribute by building a positive math community for students. \star Encourage a positive math mindset. \star Have conversations with their children about school and ask what they are learning about in school. \star Be open, receptive to the district's ideas about student learning and reach out to teachers/school to learn more about how they can support. \star Trust the educators to make professional decisions based on program, student, and district needs.
School Board	\star Provide the fiscal resources to support: - Highly qualified professionals for mathematics - High-quality instructional materials - Effective and efficient math interventions for remediation - Professional development for math content and instructional practices Trust the educators to make professional decisions based on program, student, and district needs.

Probability and Statistics Scope and Sequence
Semester 1

Month	Unit	Estimated Number of Weeks
September	Statistics \& Data Displays	4
October	Statistics \& Data Displays	1
	Probability \& Discrete Probability Distributions	3
November	Probability \& Discrete Probability Distributions	3
December	lhe Normal Distribution \& Its Applications	2
January	The Normal Distribution \& Its Applications	2
	Final Exam Review / Final Exam	2

Semester 2

February	Statistics \& Data Displays	4
March	Statistics \& Data Displays	1
	Probability \& Discrete Probability Distributions	3
	Probability \& Discrete Probability Distributions	3
	The Normal Distribution \& Its Applications	1
May	The Normal Distribution \& Its Applications	3
	Final Exam Review	1
	Final Exam	1

	Essential Questions	Content	Skills	PA Core Standards	Activities	Assessment/ Evidence of Learning
STATISTICS \& DATA DISPLAYS	What is statistics, and why should we study it? What makes a sampling method unbiased? What characteristics compose a well designed experiment and observational studies? How does the data produced in an experiment or observational study determine the different conclusions that can be made? What are the best methods to display and describe categorical data? What are the best methods to display and describe quantitative data?	An Overview of Statistics Data Classification Experimental Design Frequency Distributions and Their Graphs Measures of Central Tendency Measures of Variation Measures of Position	Classify data by type Classify data collection types and experimental design Identify bias Compute relative and cumulative frequencies Compute and interpret measures of center (mean, median, mode) Compute and interpret measures of spread (range, IQR, standard deviation) Apply the Empirical Rule \& Chebychev's Theorem to find the approximate proportion of data within a range	CC.2.4.HS.B. 1 CC.2.4.HS.B. 2 CC.2.4.HS.B. 3 CC.2.4.HS.B. 4 CC.2.4.HS.B. 5	Chapter 1 Review WeBWork Cumulative Frequency WeBWorK Chebychev WeBWork Measures of Center \& Variation WeBWork Textbook Chapter 1 review problems Textbook Chapter 2 review problems Frequency Distribution (States Visited) Activity Empirical Rule (Heights) Activity Statistical Survey Project Chapter 1 PowerPoint	Daily Homework Assignments Chapter 1 Daily Homework Assignments Chapter 2 Daily Classwork Exercises Textbook Review Exercises Chapter 1 Review WeBWork Cumulative Frequency WeBWorK Chebychev WeBWork Measures of Center \& Variation WeBWork Chapter 1 Quiz Chapter 2 Quiz Statistical Survey Project

	Essential Questions	Content	Skills	PA Core Standards	Activities	Assessment/ Evidence of Learning
STATISTICS \& DATA DISPLAYS (continued)	How do we use and interpret statistical summaries to describe data sets? What measures of center and spread are most appropriate to use when describing a distribution? Why is the normal distribution essential to the study of statistics? Does the data always lead to the truth? Is all data created equal?		Compute and interpret z-scores		Chapter 2 PowerPoint Daily homework assignments	
PROBABILITY \& DISCRETE PROBABILITY DISTRIBUTIONS	How can we use probability to model real-life scenarios? How can we base decisions on chance?	Basic Concepts of Probability Conditional Probability and the Multiplication Rule The Addition Rule Counting Principles	Classify probability by type Utilize the multiplication rule, addition rule, and complements to compute probability	$\begin{aligned} & \text { CC.2.4.HS.B. } 6 \\ & \text { CC.2.4.HS.B. } 7 \end{aligned}$	Discrete \& Binomial Distributions Practice WKST Binomial \& Geometric Distributions Practice WKST	Daily Homework Assignments Chapter 3 Daily Homework Assignments Chapter 4 Daily Classwork Exercises

	Essential Questions	Content	Skills	PA Core Standards	Activities	Assessment/ Evidence of Learning
PROBABILITY \& DISCRETE PROBABILITY DISTRIBUTIONS (continued)	Is anything in nature truly random? How is probability used to express the strength of our conclusions? To what extent should decisions be made based on chance?	Probability Distributions Binomial Distributions More Discrete Probability Distributions	Determine if events are independent or dependent Determine if events are mutually exclusive Utilize the fundamental counting principle, permutations, and combinations in order to compute advanced probability Differentiate between the binomial, geometric, and Poisson distribution Compute and interpret the mean and standard deviation for binomial, geometric, and Poisson distributions		Binomial, Geometric, Poisson Distributions Practice WKST Probability Concepts WeBWorK Combinations WeBWork Binomial Distribution WeBWork Poisson Distributions WeBWork Textbook Chapter 3 review problems Textbook Chapter 4 review problems Conditional Probability (Hair Color vs Eye Color) Activity	Textbook Review Exercises Binomial Distributions Practice WKST Geometric Distributions Practice WKST Binomial, Geometric, Poisson Distributions Practice WKST Probability Concepts WeBWork Permutations \& Combinations WeBWork Binomial Distribution WeBWork Geometric \& Poisson Distributions WeBWork

	Essential Questions	Content	Skills	PA Core Standards	Activities	Assessment/ Evidence of Learning
PROBABILITY \& DISCRETE PROBABILITY DISTRIBUTIONS (continued)			Compute probabilities for binomial, geometric, and Poisson distributions		Addition Rule (Social Media) Activity Discrete Probability Distribution (Lottery) Activity Chapter 3 PowerPoint Chapter 4 PowerPoint Daily homework assignments Chapter 3 Daily homework assignments Chapter 4	Sections 3.1 \& 3.2 Quiz Sections 3.3 \& 3.4 Quiz Sections 4.1 \& 4.2 Quiz Distributions Quiz
THE NORMAL DISTRIBUTION \& ITS APPLICATIONS	What are the best methods to display and describe quantitative data? How do we use and interpret statistical summaries to describe data sets?	Introduction to Normal Distributions and the Standard Normal Distribution Normal Distributions: Finding Probabilities	Calculate the area under a normal distribution (area to left, to right, between two points) using calculators and tables		Normal Distribution Calculator Functions WKST \#1 Normal Distribution Calculator Functions WKST \#2	Daily Homework Assignments Daily Classwork Exercises Textbook Review Exercises

	Essential Questions	Content	Skills	PA Core Standards	Activities	Assessment/ Evidence of Learning
THE NORMAL DISTRIBUTION \& ITS APPLICATIONS (continued)	What measures of center and spread are most appropriate to use when describing a distribution? Why is the normal distribution essential to the study of statistics?	Normal Distributions: Finding Values Sampling Distributions and the Central Limit Theorem Normal Approximations to Binomial Distributions	Find z -scores when given a probability/ percentile /area under the normal curve Transform a z-score to an x-value Use the Central Limit Theorem to compare population and sample means/ standard deviations Calculate probabilities under the Normal curve while using the Central Limit Theorem Approximate a binomial distribution using the Normal distribution		Normal Distribution Properties WeBWork Normal Distribution Probabilities WeBWork Normal Approximation of Binomial WeBWork Central Limit Theorem WeBWork Textbook Chapter 5 review problems Normal Distribution (Heights) Activity Central Limit Theorem (Heights Part 2) Activity Chapter PowerPoints Daily homework assignments	Normal Distribution Calculator Functions WKST \#1 Normal Distribution Calculator Functions WKST \#2 Normal Distribution Properties WeBWork Normal Distribution Probabilities WeBWork Normal Approximation of Binomial WeBWork Central Limit Theorem WeBWork Sections 5.1 \& 5.2 Quiz Sections 5.3, 5.4, 5.5 Quiz

	Essential Questions	Content	Skills	PA Core Standards	Assessment/ Evidence of Learning	
THE NORMAL ITS APPLICATIONS (continued)				NFL Wins Distribution Assignment		
FINAL EXAMINATION REVIEW	All essential questions from throughout the year	All content areas from throughout the year	Review concepts for final examination		Final Exam Review Assignment	Final Exam Review Assignment

